MCQ WORKSHEET-I REAL NUMBERS

1.	A rational	number	between	$\frac{3}{5}$	and	$\frac{4}{5}$	is
----	------------	--------	---------	---------------	-----	---------------	----

(a) $\frac{7}{5}$ (b) $\frac{7}{10}$ (c) $\frac{3}{10}$ (d) $\frac{4}{10}$

A rational number between $\frac{1}{2}$ and $\frac{3}{4}$ is: 2.

(a) $\frac{2}{5}$ (b) $\frac{5}{8}$ (c) $\frac{4}{3}$ (d) $\frac{1}{4}$

Which one of the following is not a rational number: 3.

(a) $\sqrt{2}$ (b) 0

(c) √4

(d) √-16

Which one of the following is an irrational number:

(a) $\sqrt{4}$ (b) $3\sqrt{8}$

(c) $\sqrt{100}$ (d) $-\sqrt{0.64}$

5. $3\frac{3}{8}$ in decimal form is:

(a) 3.35 (b) 3.375

(c) 33.75

(d) 337.5

6. $\frac{5}{6}$ in the decimal form is:

(a) $0.8\overline{3}$ (b) $0.8\overline{33}$

(c) $0.6\overline{3}$

(d) $0.6\overline{33}$

Decimal representation of rational number $\frac{8}{27}$ is:

(a) 0.296

(b) 0.296 (c) 0.296 (d) 0.296

0.6666..... in $\frac{p}{q}$ form is:

(a) $\frac{6}{99}$ (b) $\frac{2}{3}$ (c) $\frac{3}{5}$ (d) $\frac{1}{66}$

The value of $(\sqrt{5} + \sqrt{2})(\sqrt{5} - \sqrt{2})$ is:

(a) 10 (b) 7

(c) 3 (d) $\sqrt{3}$

10. $0.\overline{36}$ in $\frac{p}{a}$ form is:

(a) $\frac{6}{99}$ (b) $\frac{2}{3}$ (c) $\frac{3}{5}$ (d) none of these

MCQ WORKSHEET-II CLASS X : CHAPTER - 1 REAL NUMBERS

1.	$\sqrt{5}$ -3-2 is	alaa dhaa	etional annul an	(a) assolts a	(D	tional annulus	
	(a) a rational nur	nber (b) a n	atural number	(c) equal to z	ero (d) an ii	rational number	
2.	Let $x = \frac{7}{20 \times 25}$ be	e a rational nu	mber. Then x h	as decimal expa	nsion, which t	erminates:	
	(a) after four pla (c) after two place			er three places er five places o			
3.	The decimal expa	ansion of $\frac{6}{72}$	63 ×175 is				
	(a) terminating (c) non terminati	ion and repeati		n-terminating irrational num	per		
4.	If HCF and LCM (a) 9696			9696, then th 784 (d) 48		he two numbers is	
5.	$(2+\sqrt{3}+\sqrt{5})$ is (a) a rational nur		natural number	(c) a integer r	number (d) an i	rrational number	
6.	If $\left(\frac{9}{7}\right)^3 \times \left(\frac{49}{81}\right)^{2x}$,		
	(a) 12	(b) 9	(c) 8	(d) 6			
7.	The number .211 (a) terminating d (c) non terminati	ecimal			n-terminating one of these	decimal	
•							
8.	If (m) ⁿ =32 where (a) 32	e m and n are (b) 25	(c) 5 ¹⁰	(d) 5 ²⁵	value of (n)	is:	
9.	The number 0.57	in the $\frac{p}{q}$ for	rm $q \neq 0$ is				
	(a) $\frac{19}{35}$	(b) $\frac{57}{99}$	(c) $\frac{57}{95}$	(d) $\frac{19}{30}$			
10.	10. The number $0.5\overline{7}$ in the $\frac{p}{q}$ form $q \neq 0$ is						
	(a) $\frac{26}{45}$	(b) $\frac{13}{27}$	(c) $\frac{57}{99}$	(d) $\frac{13}{29}$			
11.	Any one of the nur (a) 2	mbers a, a + 2 (b) 3	and a + 4 is a r (c) 5	nultiple of: (d) 7			
12.	If p is a prime num	ber and p divi	des k ² , then p d	livides: (d) none of th	iese		

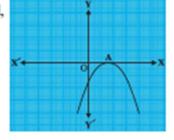
MCQ WORKSHEET-I

POLYNOMIALS

The value of k for which (-4) is a zero of the polynomial $x^2 - x - (2k + 2)$ is

(a) 3

(b) 9


If the zeroes of the quadratic polynomial ax2 + bx + c, $c \neq 0$ are equal,

(a) c and a have opposite sign

(b) c and b have opposite sign

(c) c and a have the same sign

(d) c and b have the same sign

The number of zeroes of the polynomial from the graph is

(a) 0

(b) 1

(c) 2

If one of the zero of the quadratic polynomial $x^2 + 3x + k$ is 2, then the value of k is

(a) 10

(b) -10

(c) 5

A quadratic polynomial whose zeroes are -3 and 4 is (a) $x^2 - x + 12$ (b) $x^2 + x + 12$ (c) $2x^2 + 2x - 24$. (d) none of the above.

The relationship between the zeroes and coefficients of the quadratic polynomial $ax^2 + bx + c$

is (a) $\alpha + \beta = \frac{c}{a}$ (b) $\alpha + \beta = \frac{-b}{a}$ (c) $\alpha + \beta = \frac{-c}{a}$

(d) $\alpha + \beta = \frac{b}{a}$

The zeroes of the polynomial $x^2 + 7x + 10$ are

(a) 2 and 5

(b) -2 and 5 (c) -2 and -5 (d) 2 and -5

The relationship between the zeroes and coefficients of the quadratic polynomial $ax^2 + bx + c$

is (a) $\alpha.\beta = \frac{c}{a}$ (b) $\alpha.\beta = \frac{-b}{a}$ (c) $\alpha.\beta = \frac{-c}{a}$

The zeroes of the polynomial $x^2 - 3$ are

(b) -2 and 5 (c) -2 and -5 (d) none of the above

The number of zeroes of the polynomial from the graph is

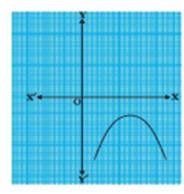
(b) 1

(c) 2

 A quadratic polynomial whose sum and product of zeroes are -3 and 2 is

(a) $x^2 - 3x + 2$ (b) $x^2 + 3x + 2$ (c) $x^2 + 2x - 3$.

(d) $x^2 + 2x + 3$.


The zeroes of the quadratic polynomial x² + kx + k, k ≠ 0.

(a) cannot both be positive

(b) cannot both be negative

(c) are always unequal

(d) are always equal

MCQ WORKSHEET-II CLASS X : CHAPTER - 2 POLYNOMIALS

			POLYNC	DMIALS		
1.	If α, β are the zeroes of the polynomials $f(x) = x^2 + x + 1$, then $\frac{1}{\alpha} + \frac{1}{\beta}$					
	(a) 0	(b) 1	(c) -l	(d) none of these		
2.	If one of the zero of the polynomial $f(x) = (k^2 + 4)x^2 + 13x + 4k$ is reciprocal of the other then $k =$					
	(a) 2	4	(c) -l			
3.	If α, β are th	e zeroes of the	polynomials f(x	$(x) = 4x^2 + 3x + 7$, then $\frac{1}{\alpha} + \frac{1}{\beta}$		
	2	2	(c) $\frac{3}{7}$,		
4.	If the sum of t (a) 2		e polynomial f((c) -2	$f(x) = 2x^3 - 3kx^2 + 4x - 5$ is 6, then value of k is $f(d) - 4$		
5.	of $y = p(x)$ int	ersects the		y the x-coordinates of the points, where the graph (d) none of the above		
6.		e zeroes of the (b) 1 - c		$(x) = x^2 - p(x+1) - c$, then $(\alpha+1)(\beta+1) = (d) 1 + c$		
7.	A quadratic po (a) 0	olynomial can l (b) l	nave at most (c) 2	zeroes (d) 3		
8.	A cubic polyn (a) 0	omial can have (b) 1	at most (c) 2	zeroes. (d) 3		
9.	Which are the zeroes of $p(x) = x^2 - 1$: (a) $1, -1$ (b) $-1, 2$ (c) $-2, 2$ (d) $-3, 3$					
10.			= (x-1)(x-2) 2 (d) -1			
11.	Which of the	following is a p	olynomial?			
	$(a)x^2 - 5x + 3$					
	$(b)\sqrt{x} + \frac{1}{\sqrt{x}}$					
	$(c)x^{3/2}-x+x$	1/2				
	$(d)x^{1/2} + x + 1$					
12.	_	_	a polynomial?			
	$(a)\sqrt{3}x^2 - 2\sqrt{2}$ $(b)\frac{3}{2}x^3 - 5x^2$					
	$(c)x + \frac{1}{2}$	$\sqrt{2}$				
	(c)x + -					

 $(d)5x^2-3x+\sqrt{2}$

MCQ WORKSHEET-I CLASS X : CHAPTER - 3 PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

1.	The pair of equations $y = 0$ and $y = -7$ (a) one solution (b) two solution		ny solutions (d) no solution					
2.	The pair of equations x = a and y = b graphically represents the lines which are (a) parallel (b) intersecting at (a, b) (c) coincident (d) intersecting at (b, a)							
3.	The value of c for which the pair of equany solutions is (a) 3 (b) -3 (c) -1		x - 2y = 3 will have infinitely d) no value					
4.	When lines l ₁ and l ₂ are coincident, then the graphical solution system of linear equation have (a) infinite number of solutions (b) unique solution (c) no solution (d) one solution							
5.	When lines l ₁ and l ₂ are parallel, then to (a) infinite number of solutions (c) no solution	he graphical solution syst (b) unique solution (d) one solution	tem of linear equation have					
6.		ngle formed between the 2), (0, 0) and (6.5,0) ne of these	lines and y-axis from the graph					
7.	Five years ago Nuri was thrice old as Sonu. Ten years later, Nuri will be twice as old as Sonu. The present age, in years, of Nuri and Sonu are respectively (a) 50 and 20 (b) 60 and 30 (c) 70 and 40 (d) 40 and 10							
8.	The pair of equations $5x - 15y = 8$ and (a) infinite number of solutions (c) no solution	d 3x – 9y = 24/5 has (b) unique solution (d) one solution	X 1 2 3 4 5 6					
9.	The pair of equations $x + 2y + 5 = 0$ as (a) infinite number of solutions (c) no solution	nd -3x - 6y + 1 = 0 have (b) unique solution (d) one solution						
10.	The sum of the digits of a two digit nu get reversed. The number is	imber is 9. If 27 is added	to it, the digits of the numbers					

(b) 72 (c) 63 (d) 25

(a) 36

MCQ WORKSHEET-II CLASS X : CHAPTER - 3 PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

1.	If a pair of equation (a) parallel (c) always interse	(b) a	lines will be (b) always coincident (d) intersecting or coincident				
2.	The solution of the equations $x + y = 14$ and $x - y = 4$ is (a) $x = 9$ and $y = 5$ (b) $x = 5$ and $y = 9$ (c) $x = 7$ and $y = 7$ (d) $x = 10$ and $y = 4$						
3.	The sum of the numbs, the fraction becomes $\frac{4}{7}$	comes ½, then t	he fraction		n is 12. If the de	enominator is increased by	
4.	The value of k for v					sy = 1 has a unique	
5.	If a pair of equation is inconsistent, then the lines will be (a) parallel (b) always coincident (c) always intersecting (d) intersecting or coincident						
6.	The value of k for v					ky = 10 has infinite many ese	
7.	The value of k for v solution is (a) $k = -3$			-		y = 3 has a unique	
8.	Sum of two number (a) 24 and 12					are (d) none of these	
9.	The solution of the (a) x = 1 and y =					(d) $x = 5$ and $y = 4$	
10. The solution of the equations $x + 2y = 1.5$ and $2x + y = 1.5$ is (a) $x = 1$ and $y = 1$ (b) $x = 1.5$ and $y = 1.5$ (c) $x = 0.5$ and $y = 0.5$ (d) none of these							
11.	is				y = 3 and $5x + k$	xy + 7 = 0 has no solution	
12.	. The value of k for v solution is	which the syster	(c) 3 (d) n of equati (c) 6 (d)	ons 3x + 5	5y = 0 and kx +	10y = 0 has a non-zero	